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Abstract: The design of an idle speed controller for automotive engines is
considered. A hybrid nonlinear model of the engine is presented. Based on
suitable (nonlinear) change of variables, the idle speed control design problem can
satisfactorily be addressed via LTI techniques. Specifically, the design problem has
been formalized as a finite dimensional discrete-time `∞ optimal control problem,
whereby the fuel consumption has to be minimized. Polynomial techniques have
been used to convert the control design formulation to a linear “least absolute data
fitting” problem, for which solution very efficient and stable numerical methods
exist. Experimental results on a commercial car have been finally reported.
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1. INTRODUCTION

The main targets of the design of gasoline en-
gines for passenger cars are: improvement of safety
and driveability, minimization of fuel consump-
tion and compliance with the emission standards.
The difficulty of controlling the engine at idle is
due to the variation of the torque absorbed by
the devices powered by the engine, such as the
air conditioning system and the steering wheel
servo-mechanism, which may cause engine stall.
Interesting results on idle speed control have been

presented in (Balluchi et al., 2000; Hrovat and
Sun, 1997; Butts et al., 1999; Shim et al., 1996;
Yurkovich and M.Simpson, 1997; Carnevale and
Moschetti, 1993). A hybrid formalism is adopted
here to describe the cyclic behavior of the engine.
Such formalism is particularly useful for validation
purposes. In fact, since at idle speed the frequency
of the engine cycles is very low, then an improper
control action – even for a single engine cycle
– may cause the engine to stall. Nevertheless,
LTI techniques can be used for control design



Fig. 1. Hybrid engine model.

purposes because, at idle, the dynamic ranges
of all system variables of interest are small and
linearization techniques are effective. Moreover,
we have adopted a suitable (nonlinear) change of
variables and an ad-hoc control structure (patent
pending), which have contributed to make the
problem affordable by standard LTI control tech-
niques. Certainly, fuel consumption minimization
is paramount at idle. However, also fast rejection
of load step disturbances is important and should
be guaranteed to a certain extent. To this end, the
idle speed control problem is formalized as a finite
dimensional `∞ optimal control problem, which
is solved via polynomial techniques. Specifically,
the parameterization of all closed-loop ripple-free
dead-beat responses to step disturbances is used
to characterize the corresponding class of stabi-
lizing controllers over which the fuel consumption
is minimized in a `∞ sense. The performance of
the proposed controller has been tested in exten-
sive simulations of the hybrid closed-loop model.
Experimental results on a commercial car are re-
ported and testify the effectiveness of the design
approach. Significant improvements in terms of
disturbance rejection, idle speed fluctuation and
fuel consumption have been achieved with respect
to the standard PID/LQ controllers, traditionally
adopted in the automotive industry.

2. HYBRID ENGINE MODEL

In this section, a nonlinear hybrid model of a 4–
stroke 4–cylinder spark ignition engine for idle
speed control is briefly presented (see (Albertoni
et al., 2003; Balluchi et al., 2000) for more details).
Engine control inputs are:

• The throttle valve command α, used to con-
trol the engine air charge qa;

• The spark advance angle β, which defines the
ignition timing.

Fuel injection is set according to the evolution of
the air charge qa so as to ensure a stoichiometric
ratio to the mixture, as requested for tailpipe
emission control.
As depicted in Fig. 1, the engine hybrid model is
composed of: the throttle valve, the intake mani-
fold, the cylinders and the crankshaft. The throttle
valve model is

α̇e(t) =
1
τα

αe(t) +
1
τα

α(t− dα) (1)

Fig. 2. Hybrid model of the cylinders.

where: α and αe denote, respectively, the throttle
valve command and the throttle valve angle; dα

models the actuator delay. The intake manifold
dynamics is described in terms of the intake
manifold pressure p as follows:

ṗ(t) = Kg[Fth(p(t), αe(t))− Fcyl(p(t), n(t))] (2)

qa(t) =
k1

n
Fcyl(p(t), n(t)) (3)

where Fth denotes the air–flow rate through the
throttle valve and Fcyl denotes the cylinder air–
flow rate (the latter depending on the crankshaft
speed n). Let tdc

k denote the sequence of time
instants at which the pistons reach a dead center,
i.e. either the lower most (bottom dead center) or
the upper most (top dead center) positions. The
output equation (3), evaluated at time t = tdc

k ,
gives the amount of air mass qa(k) = qa(tdc

k )
loaded by the cylinder that concluded the intake
stroke at time tdc

k . Fig. 2 reports the hybrid
model of the cylinders, which describes the torque
generation mechanism for 4–cylinder engines. In
this model, the end of a stroke and the beginning
of the subsequent one is represented by the dead–
center self–loop transition, that is executed when
the crankshaft angle θ reaches 180 degrees. This
transition defines the dead–center time sequence
tdc
k . The crankshaft angle dynamics is

θ̇(t) = kN n(t),with reset θ := 0 when θ = 180.

The torque generated by the engine during the
k–th expansion stroke depends on: the spark ad-
vance command β(tdc

k−1) (set at the beginning of
the compression stroke), the mass of loaded air
qa(tdc

k−1), and the engine speed at the beginning
of the expansion stroke n(tdc

k ) (see Fig. 3). The
engine torque, Teng(t), is modeled as a piece–wise
constant signal, with discontinuity points at times
tdc
k , synchronized with the dead center events, i.e.

Teng(t) = Tpot(qa(tdc
k−1), n(tk)) η(β(tdc

k−1)) (4)

for t ∈ [tk, tk+1). In (4), η(·) ∈ [0.6, 1] is the
spark ignition efficiency and Tpot is the potential
engine torque, which is really delivered when η =
1. Finally, the crankshaft model describes the
evolution of the crankshaft revolution speed n,

ṅ(t) = KJ(Teng(t)− Tload(t)) . (5)



Fcil(t)

qa(k-1)

qb(k-1)

tktk-1tk-2 tk+1
Intake Compression Expansion Exhaust

T (k)eng

t

Ignition

b(k-1)

Fig. 3. Delays in engine torque generation.

In (5), Tload models the load torque acting on the
crankshaft, which is due to pumping and friction
losses and auxiliary subsystems powered by the
engine (e.g. electric generator and steering pump).

3. MULTIRATE ENGINE MODEL FOR
CONTROLLER SYNTHESIS

The engine control unit is equipped with spark
ignition and intake throttle valve controllers, each
one guaranteeing a good tracking of reference
signals Tec and Tpc, respectively, for the en-
gine torque Teng and the potential torque Tpot.
See Fig. 4. Such inner–loop controllers include
appropriate compensation of nonlinearities and
have been designed and validated on the basis of
the hybrid engine model presented in Section 2. In
addition, a feedforward filter is used to compute
an estimate Tpe of the actual potential torque
Tpot, according to (4). For synthesis purposes, the
partially controlled engine can be represented as a
multirate system composed of two SISO discrete-
time plants (see (Albertoni et al., 2003)). By in-
troducing the unitary delay operator d, defined
as dy(t) := y(t − 1), the engine model can be
rewritten as follows:

n(d) =P1(d)Tec(d) + P1d(d)Tload(d) (6)

Tpe(d) =P2(d)Tpc(d) (7)

with

P1(d) =
B1(d)
A1(d)

, P2(d) =
B2(d)
A2(d)

, P1d(d) =
C1(d)
A1(d)

and (A1, B1), (A1, C1) and (A2, B2) coprime poly-
nomial pairs. The dynamics (6) models the evolu-
tion of the crankshaft speed at the dead-center
times, which depends on the reference engine
torque Tec and the load torque Tload. This model
is obtained from (4–5) and it is valid as long as
the spark advance command does not saturate,
i.e. for Tec ≤ Tpc. The time interval between two
subsequent dead–centers is not uniform since it
depends on the engine speed n. However, to sim-
plify the synthesis, we assume a constant dead–
center period Tc1 = 44 ms, corresponding to

Fig. 4. System Structure.

the nominal engine speed n0 = 680 rpm. Ro-
bustness of the controller with respect to dead–
center time variations is discussed in (Balluchi
et al., 2005). The dynamics (7) is related to the
air charge control and has a fixed sampling time
Tc2 = 12ms. By controlling the air charge, Tpc

in (4) is modulated so as to avoid saturation of
the spark ignition efficiency η.

4. CONTROLLER SYNTHESIS

The proposed controller structure, depicted in
Fig. 4, consists of two SISO controllers. The first
one is the Spark-Advance Ignition Reference con-
troller K1(d), used to control the engine speed
dynamics (6) to the speed reference signal nr,
obtained from the gas pedal position. Its main
goal is a fast rejection of step disturbances Tload.
To reduce fuel consumption, a low activity of the
command Tec is also required. The second con-
troller is the Air-Mass Reference controller K2(d),
in charge of regulating the dynamics (7) to the
potential torque reference signal Tpr, introduced
for feedforward compensation of torque loads.
Its main objective is to provide a good tracking
of Tpr by Tpe, with strict requirements on rise-
time and overshoot. This controller contributes
to avoid saturations on the first command Tec.
The controllers K1(d) and K2(d) are described,
respectively, in Section 4.1 and Section 4.2 below.

4.1 Spark-Advance Reference controller K1(d)

Consider the scalar, sampled-data system of
Fig. 5. Assuming for simplicity r(k) = 0,

Y (d) =
B(d)
A(d)

U(d) +
C(d)
A(d)

D(d) , (8)

where: U(d), Y (d) and D(d) stand for the D-
transforms of, respectively, the input, the output
and the disturbances sequences u(t), y(t) and d(t);
B(d)
A(d) and C(d)

A(d) are, respectively, strictly causal
and causal transfer functions given as ratio of



Fig. 5. First Feedback control structure.

polynomials A, B and C. Assume that the distur-
bance sequence d(t) is a polynomially unbounded
sequence with rational D-transform

D(d) :=
Bd(d)
Ad(d)

(9)

with roots of Ad(d) in |d| ≥ 1. Notice that (9)
includes any non decreasing sequence as step or
ramp signals. Assume also:

(A.1)
{

(A,B) coprime with A(0) 6= 0, B(0) = 0
(Ad, Bd) coprime with Ad(0) 6= 0.

Define the feedback action between the output
y(t) and u(t) as U(d) = −K(d)Y (d) with

K(d) =
S(d) + A(d)Q(d)
R(d)−B(d)Q(d)

. (10)

It is well known (Kučera, 1979) that K(d) in (10)
represents the class of all stabilizing controllers
for (8) provided that the polynomial pair (R,S)
satisfies the following Bezout equation

A(d)R(d) + B(d)S(d) = 1 , (11)

with the free transfer function Q causal and
asymptotically stable. Because of coprimeness of
(A,B), (11) is always solvable with deg S < deg A
and deg R < deg B. For the design, we will exploit
dead-beat ripple-free output responses, viz Y (d)
and ∆U(d) := (1 − d)U(d) both polynomials
(Franklin and Emami-Naemi, 1986). To determine
Q(d), let the polynomials B, Ad, Bd and C be
partitioned as the product of stable/antistable
terms: B = B−B+, Ad = A−d A+

d , Bd = B−
d B+

d

and C = C−C+, where B+ is a strictly stable
polynomial (i.e. free of roots in |d| ≤ 1) and B− is
a monic unstable polynomial (with all of its roots
in |d| ≤ 1), and so on for the other polynomials.
It is further assumed:

(A.2)





(Ad, B) coprime polynomial pair
Ad factor of (1− d)C−, i.e.
(1− d)C−=GAd, for some polynomial G.

The first assumption is required to ensure both
the dead-beat and ripple-free properties, whereas
the second is needed only if ripple-free responses
are of interest. The following complete parameter-
ization is given in (Casavola et al., 1999).

Proposition 1 - Let (A.1)-(A.2) be fulfilled.
Then, Youla parameters Q in (10), yielding all
ripple-free dead–beat controllers, and the corre-
sponding closed-loop responses Y (d) and ∆U(d)
can be parameterized in terms of an arbitrary
polynomial W (d) as follows

Q=
Zo + Ad (To + B+W )

C+B+B+
d

(12)

Y = Y o − C−B−B−
d [To + B+W ] (13)

∆U = GB−
d

(
SC+B+

d + A [Vo + AdW ]
)

(14)

with G as in (A.2)

where: (Yo, Zo) is the unique minimal degree solu-
tion with respect to Y (i.e. deg Y < deg C−B−B−

d )
of the polynomial Diophantine equation

CBdR−AdY = ZC−B−B−
d

while (Vo, To) is the unique minimal degree solu-
tion with respect to T (i.e. deg To < deg B+) of
the polynomial Diophantine equation

−AdT + B+V = Zo .

Performance analysis. Since the minimization of
the control effort is of primary importance, then
the following problems are considered

(P.3) min
W∈<w[d]

‖∆U‖A∞

(P.4) min
W∈<w[d]

‖∆U‖A∞ , subject to ‖Y ‖A∞ < γ2

where A∞ denotes the set of all D-transforms
of sequences in `∞, viz. the set of bounded se-
quences. Given H(d) :=

∑∞
k=0 ĥkdk, it results

‖H(d)‖A∞ := ‖ĥk‖∞.
It is worth pointing out that the minimization
of ∆U is relevant here because it quantifies dis-
placements with respect to steady-state. In fact,
under step disturbances, ∆U is nonzero only dur-
ing transients. Then, (P.3) and (P.4) express the
requirement that, among all responses of length
w, the one minimizing the maximum displace-
ment from the constant command corresponding
to the steady-state has to be preferred. In (P.4),
a constraint on the maximum performance error
‖Y ‖A∞ is also considered.
Finally, it is worth noting that (Casavola, 1996;
Casavola et al., 1999) showed thatA∞-norm mini-
mization problems for FIR systems are equivalent
to linear Chebyschev data fitting (LCDF) prob-
lems, which can be efficiently solved by standard
LP solvers for any chosen horizon w := deg W .



Fig. 6. Second Feedback control structure

4.2 Air-Mass Reference controller K2(d)

The controller K2(d) has been designed via an
analytical approach. Consider the scalar, sampled-
data system of Fig. 6. Let the desired response
from r(t) to y(t) be characterized by the closed-
loop transfer fraction

W0(s) =
ω2

n

s2 + 2ξωns + ω2
n

with ωn and ξ satisfying given rise-time and over-
shoot specifications. First, W0(s) is converted to
discrete-time representation, obtaining W0(d) =
Nw(d)
Dw(d) . Then, the identity

W0(d) =
Y (d)
U(d)

=
K(d)P(d)

1 +K(d)P(d)

is imposed. The controller is obtained as follows

K(d) =
S(d)
R(d)

=
Wo(d)

P(d)−Wo(d)
=

NwA

(Nw −Dw)B
.

If (A,B) are coprime and strictly Hurwitz, then
the problem has a unique solution, the closed-loop
system is stable and realizes the desired transfer
function W0(d).

5. EXPERIMENTAL RESULTS

In this section, we report some experimental re-
sults obtained in Magneti Marelli Powertrain,
Bologna (Italy), by implementing the two SISO
control loops illustrated in Section 4 on the ECU
of a 1.4L Volkswagen Polo engine. First, the LTI
models (6–7) of the partially controlled engine
have been identified. The order of the resulting
controllers are 5 for K1 and 3 for K2. The ex-
perimental results show the effectiveness of the
proposed controller in terms of both crankshaft
speed fluctuation around the nominal set-point
and rejection of load step disturbances. Notable
improvements on car driveability have been re-
ported by Magneti Marelli Powertrains experts
during road tests.

In Fig. 7–10, the following variables are reported
for each experiment (from top to down):

• Reference speed engine nr and measured
speed engine n;

• Engine torque command Tec;
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Fig. 7. Response to a step disturbance.
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Fig. 8. Transient towards idle.

• Reference potential torque Tpr and estimated
potential torque Tpe;

• Potential torque command Tpc.

Fig. 7 reports the engine response to a large step
load disturbance starting at time t = 71.5. The be-
havior is completely satisfactory: the undershoot
has been halved with respect to standard PID/LQ
regulators performances; the overshoot is very
small and no saturation occurs. In Fig. 8, a tran-
sient towards idle is reported. The engine speed
n drops from high values to the idle speed value.
Also in this case, transients are smooth, fast and
well dumped. In fact, only a very low undershoot
of 14 rpm can be observed at time t = 89.2. In
this type of experiments, standard PID/LQ reg-
ulators usually exhibit strong undershoots. Fig. 9
reports a very critical test: the system is subject
to fast variations of the reference engine speed nr.
Under this type of excitation, standard PID/LQ
controllers usually produce large undershoots and
oscillations. On the contrary, the behavior of the
proposed controller is very good in that neither
undershoot nor speed fluctuations are practically
observed, while the control effort is small. Finally,
Fig. 10 reports the response to a LP–filtered step
reference. Even if the synthesis has not been ori-
ented to engine speed tracking performance, the
behavior is excellent.



74 76 78 80 82 84 86 88 90
−40
−20

0
20
40
60
80

N
m

T
pc

 = −1.40

Time: 81.216

74 76 78 80 82 84 86 88 90
−20

0

20

40

60

80

N
m

T
pr

 = 7.00
T

pe
 = 27.60

Time: 81.216

74 76 78 80 82 84 86 88 90
−30

−20

−10

0

10

20

N
m

T
ec

 = −10.90

Time: 81.216

74 76 78 80 82 84 86 88 90
600
700
800
900

1000
1100
1200

rp
m

n = 1116.00
n

r
 = 1032.00

Time: 81.216

Fig. 9. Rapid variations of the reference speed.

6. CONCLUSION

In this paper, the design of an idle speed con-
troller for an automotive gasoline port-injection
engine has been considered. The problem has been
formalized as a finite dimensional `∞ optimiza-
tion control problem. The polynomial equation
approach has been instrumental to the synthe-
sis of the controller. In the proposed solution,
implementation constraints related to algorithm
complexity are easily handled by choosing the
controller order small enough. The proposed con-
troller has been validated by extensive simulations
on a hybrid model of the engine. Experimental re-
sults show the larger flexibility and effectiveness of
the proposed controller with respect to standard
PID/LQ controllers in achieving the demanding
control objectives. In particular, fast rejection of
step load disturbances, low undershoots and lim-
ited speed fluctuation have been achieved with rel-
atively low control activity, which in turn implies
low fuel consumption.
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