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Abstract

This tutorial white-paper illustrates practical aspects of FIR

filter design and fixed-point implementation along with the

algorithms available in the Filter Design Toolbox and the
Signal Processing Toolboxor this purpose.

The emphasis is mostly on lowpass filters, but many of the 5

results apply to other filter types as well.

The tutorial focuses on practical aspects of filter design
and implementation, and on the advantages and disadvan-
tages of the different design algorithms. The theory behind
the design algorithms is avoided except when needed to mo-g

tivate them.
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1 Ideal lowpass filter
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Figure 1: lllustration of the typical deviations from the ideal
lowpass filter when approximating with an FIR filtex; = 0.41t

The ideal lowpass filter is one that allows through all fre- . . e
guency components of a signal below a designated cutit  FIR filter design specifications

frequencyc, and rejects all frequency components of 8ot the passband/stopband ripples and the transition

signal aboveu.
Its frequency response satisfies

1, 0w
0, w<w<Tm

Hm@%{ )

The impulse response of the ideal lowpass fili@rcan
easily be found to bel]

hp[n] = w

—o0 < N< oo,

)

2 FIR lowpass filters

Because the impulse response required to im Iement?ﬁé S ) . . .
Y 'mpu P aul 'Mp Ospecmcatlon will be determined by the design algorithm

ideal lowpass filter is infinitely long, it is impossible t
design an ideal FIR lowpass filter.

width are undesirable but unavoidable deviations from the
response of an ideal lowpass filter when approximating
with a finite impulse response. Practical FIR designs typ-
ically consist of filters that meet certain design specifi-
cations, i.e., that have a transition width and maximum
passband/stopband ripples that do not exceed allowable
values.

In addition, one must select the filter order, or equiva-
lently, the length of the truncated impulse response.

A useful metaphor for the design specifications in FIR
design is to think of each specification as one of the angles
in a triangle as in Figura.

The metaphor is used to understand the degrees of
freedom available when designating design specifications.
Because the sum of the angles is fixed, one can at most
ect the values of two of the specifications. The third

utilized. Moreover, as with the angles in a triangle, if we

Finite length approximations to the ideal impulse rgjake one of the specifications larger/smaller, it will im-

sponse lead to the presence of ripples in both the passb%%}?

(w < ) and the stopbandy(> ) of the filter, as well
as to a nonzero transition width between the passband
stopband of the filter (see Figuig.

one or both of the other specifications.
s an example, consider the design of an FIR filter that

g1neaets the following specifications:

Specifications Set 1
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Figure 2: FIR design specifications represented as a triangl€igure 3: Kaiser window design meeting predescribed specifi-
cations.

1. Cutoff frequency: Girtrad/sample 3 Optimal FIR designs with fixed

transition width and filter order
2. Transition width: 006mrtrad/sample

While the truncated-and-windowed impulse response de-
sign algorithm is very simple and reliable, it is not op-
timal in any sense. The designs it produces are gener-
ally inferior to those produced by algorithms that employ

_ _ _ ) some optimization criteria in that it will have greater or-
The filter can easily be designed with the truncated-angls; greater transition width or greater passband/stopband

windowed impulse response algorithm implemented jjyples. Any of these is typically undesirable in practice,
firl (or using fdatool) if we use a Kaiser window. iherefore more sophisticated algorithms come in handy.
The zero—phage response of the filter is shown in Fi_g“reOptimaI designs are computed by minimizing some
3. Note that since we have fixed the allowable transitigheasure of the deviation between the filter to be designed
width and peak ripples, the order is determined for Us. gnq the ideal filter. The most common optimal FIR design

Close examination at the passband-edge frequeraigorithms are based on fixing the transition width and the
Wp = 0.371t and at the stopband-edge frequenay= order of the filter. The deviation from the ideal response
0.43rt shows that the peak passband/stopband ripples iareneasured only by the passband/stopband ripples. This
indeed within the allowable specifications. Usually thgeviation or error can be expressed mathematically]as [
specifications are exceeded because the order is rounded

to the next integer greater than the actual value required. E(0) = Ha(®) —Hip(el®), weQ

3. Maximum passband/stopband ripple: 0.05

whereH,(w) is the zero-phase response of the designed
1The passhand-edge frequency is the boundary between the passfiftet and Q = [0’ (Dp] U [%71-q It is still necessary to de-

and the transition band. If the transition width is TW, the passbanﬁlhe ameasure to determine “the size’Eft) - the quan-
edge frequencyop is given in terms of the cutoff frequenay; by wp =

wc— TW/2 Similarly, the stopband-edge frequency is givencay— ity We want to minimize as a result of the optimization.
wec+TW)/2. The most often used measures arefhenorm (|E(w)||e
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- minimax designs) and th&,-norm (|E(w)||2 - least- Zero-phase Response

Squares deSignS)' — Kaiser-‘window d(‘asign "\

In order to allow for different peak ripples in the pass FQuipple design 7 [

band and stopband, a weighting functigww) is usually H \\ ]

introduced, \\, /] R |
/ A ! [

Ew (W) = W(w)[Ha(w) —Hp(e®)], weQ

Zero-phase
Ve
N
)
et
/

3.1 Linear-phase designs o bod N /ﬁ' =

A filter with linear-phase response is desirable in mau AV

applications, notably image processing and data transn S a

sion. One of the desirable characteristics of FIR filters T \

that they can be designed very easily to have linear phe " Normalized Frequency (< radisample)

It is well known [3] that linear-phase FIR filters will have

impulse responses that are either symmetric or antisym- _ ) )

metric. For these types of filters, the zero-phase respoﬁ Jre 4: Passband ripple for of both the Kaiser-window-

can be determined analyticallg][ and the filter design esigned FIR filter and the remez-designed FIR filter.

problem becomes a well behaved mathematical approx-

imation problem {]: Determine the best approximation

to a given function - the ideal lowpass filter’s frequencyinimum stopband attenuation or a given maximum pass-

response - by means of a polynomial - the FIR filter - @fand ripple.

given order -the filter order -. By “best” itis meant the one For examp|e the Kaiser-window design of Sectihi

which minimizes the difference between therw () - was of 42nd order. With this same order, an equiripple

according to a given measure. filter (with fixed transition width) can be designed that is
The remez function implements an algorithm deve|superior to the Kaiser-window design:

oped in f] that computes a solution to the design problem

for linear-phase FIR filters in thé.-norm case. The de-br = remez (42, [0 0.37 0.43 1],[1 1 0 01);

sign problem is essentially to find a filter that minimizes B
the maximumerror between the ideal and actual filters. Figure4 shows the superposition of the passband de-

This type of design leads to so-called equiripple filtertlils for the filters designed with the Kaiser window and

i.e. filters in which the peak deviations from the ideal r&¥ith the remez function. Clearly the maximum deviation
sponse are all equal. is smaller for theremez design. In fact, since the filter is

The firls function implements an algorithm to comdesigned to minimize the maximum ripple (minimax de-
pute solution for linear-phase FIR filters in thig-norm Sign), we are guaranteed that no other linear-phase FIR
case. The design problem is to find a filter that minimiz&4er of 42nd order will have a smaller peak ripple for the
the energy of the error between ideal and actual filters.Same transition width.

3.1.1 Equiripple filters 3.1.2 Least-squares filters

Linear-phase equiripple filters are desirable because tluiripple designs may not be desirable if we want to
have the smallest maximum deviation from the ideal fininimize the energy of the error (between ideal and ac-
ter when compared to all other linear-phase FIR filters wfal filter) in the passband/stopband. Consequently, if we
the same order. Equiripple filters are ideally suited for agrant to reduce the energy of a signal as much as possi-
plications in which a specific tolerance must be met. Fble in a certain frequency band, least-squares designs are

example, if it is necessary to design a filter with a givepreferable.
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Zero-phase Response

Least-squares design Region B

---- Equiripple design

.| Normalized Frequency: 0.4301758
Zero-phase: 0.08727939

Region A

Normalized Frequency: 0.574707
Zero-phase: 0.03514511
fa AN 2y

Zero-phase

AR N 4 "N . \},N

\_/ oA | N P
\ ) v » | . Figure 6: Depiction of the solution space for linear-phase and
I I Y ' A nonlinear-phase FIR filters for a given set of specifications. Re-
" Normalized Frequency (< radisample) gion A represents the set of all linear-phase FIR filters that meet

the specifications. Region B represents the set of all linear and

) ] ) - ) nonlinear-phase FIR filters that meet the specifications.
Figure 5: Comparison of an optimal equiripple FIR design and

an optimal least-squares FIR design. The equiripple filter has a

smaller peak error, but larger overall error.

straightforward manner. As we have already mentioned,
the linear-phase characteristic implies a symmetry or an-
Fymmetry property for the filter coefficients. Neverthe-
ess, this symmetry of the coefficients constraints the pos-
sible designs that are attainable. This should be obvious
since for a filter withN + 1 coefficients, onlyN/2+ 1

For example, for the same transition width and filt
order as the equiripple filter designed in Sectbh.1 a
least-squares FIR design can be computed from

bls = firls(42,[0 0.37 0.43 1],[1 1 0 0]); of these coefficients are freely assignable (assuring
even). The remaining\/2 coefficients are immediately
The stopband energy for this case is given by determined by the linear-phase constraint.
1 gm _ One can think of this as reducing the search space for an
Esp = ET/MJHa(e“”)\Zdw optimal solution. The idea is depicted in Figirg/]. Re-

gion A in the graph represents the set of all linear-phase

whereHa(e/®) is the frequency response of the filter. FIR filters_ that meet a giyen set Qf_ specifications. This

In this case, the stopband energy for the equiripple filfgft contains both the optimal equiripple and the optimal
is approximately 1.7608e-004 while the stopband enerl&)z;st—squares filters we have_ mentioned so far. Region B
for the least-squares filter is 3.3106e-005. (As a referentgPresents the set of all FIR filters that meet a set of spec-
the stopband energy for the Kaiser-window design for tHfgaFlons, regardless of'thelr phase characteristic. Clearly
order and transition width is 6.1646e-005). Region B contains Region A.

So while the equiripple design has less peak error, it
has more “total” error, measured in terms of its energy.2 1 Minimum-phase designs
The stopband details for both equiripple design and the
least-squares design is shown in Figbre If one is able to relax the linear-phase constraint (i.e. if the
application at hand does not require a linear-phase charac-
teristic), it is possible to design minimum-phase equirip-
ple filters that are superior to optimal equiripple linear-
One of the advantages of FIR filters, when comparedpbase designs based on a technique described.in [
lIR filters, is the ability to attain exact linear phase in a For example, the following minimum-phase design has

3.2 Nonlinear-phase designs
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both smaller peak passband ripple and smaller peak st

. Magnitude Response
band ripple than the linear-phase equiripple design of Si —— Minimum-phase equiripple
tion 3 1 l General nonlinear phase equiripple

bm = gremez (42, [0 0.37 0.43 1],... [ S R
[1100],[1 10],'minphase’);

It is important to note that this is not a totally un
constrained design. The minimum-phase requirement

stricts the resulting filter to have all its zeros on or insic \
the unit circle? I

Magnitude

\
, !
3.2.2 More general nonlinear-phase designs

We have just stated that minimum-phase designs are oo
completely unconstrained due to the requirement on ..

loci of the zeros. A general nonlinear-phase design algo-
rithm is provided in th&irlpnorm function.

Consider the following specifications:

Normalized Frequency (xn rad/sample)

igure 7: Magnitude responses of a minimum-phase equiripple
30th order filter and a general nonlinear-phase equiripple filter

of the same order. Both filters are designed to meet the same
Specifications Set 2 specs.

1. Cutoff frequency: B75rrad/sample

2. Transition width: 015mtrad/sample

Impulse Response
--e- Minimum-phase equiripple
-e-- General nonlinear phase equiripple

3. Maximum passband ripple: 0.008

4. Maximum stopband ripple: 0.0009

A 30th order FIR equiripple filter (with nonlinear phase T
can be designed to meet that set of specs Wit pnorm,

Amplitude
L ]

,f - ,0’:\“; 38~

. / é’ Sy \‘/.4 o ¥

blp = firlpnorm(30,[0 .3 .45 1],[0 .3 ... , CR R :
J45 17,7110 0],[1 1 10 10]);

This contrasts with a 37th order filter if we require lin
ear phase. By comparison, a minimum-phase equirip , :
filter designed usingremez as described above also re Samples
quires a 30th order filter to meet the specifications which

is quite remarkable considering the minimum-phase cdFigure 8:
straint.

Impulse response comparison for an equiripple
minimum-phase filter and a nonlinear-phase equiripple filter
The fact that two different nonlinear-phase filters of theith virtually the same magnitude response.

same order meet the same specifications illustrates the dif-

ficulty associated with nonlinear-phase designs in general.

There is no longer a unique optimal solution to a given
design problem. Figur& shows the virtually identical

i ) 2Given any linear-phase FIR filter with nonnegative zero-phase char-
magnitude responses. In contrast, FigBIEhows the re- aeteristic, it is possible to extract the minimum-phase spectral factor us-
markably different impulse responses.

ing the firminphase function.
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Figure 9: Stopband details of a nonlinear-phase least-squaresigjure 10: OptimalZL, norm designs for different values gf
ter and a linear-phase least-squares filter of the same order. Ahdilters have the same order and transition width.
nonlinear-phase filter provides a smaller transition width and a

larger stopband attenuation.

3.2.3 A word on practical implementation

, . . . ecause of the symmetry in the coefficients, some practi-
firlpnormalso provides the ability to select a different _, - . : .
A . ..~ calimplementations will allow for a linear-phase response
norm for the optimization. While the default optimization _. s o
is for the £, norm, any norm between (and including) using roughly half the number of multipliers. This is par-
. m, any ticularly true with FPGAs and specialized hardware. The
and L, is possible.

end result is that it may very well be possible to stick to

By the arguments given above, it is possible to attaifjinear-phase design and achieve a more efficient imple-
a superior design usinfjir1pnorm instead offirls for

- ; ] ! mentation than comparable nonlinear-phase designs.
the same filter order, provided linear phase is not a re-
quirement. For example,

4 Optimal equiripple designs with

b = firlpnorm(40,[0 .4 .45 11,[0 .4 .45 1],... fixed transition width and peak
[(1100],[111010],[2 2]); )
p2 = firls(40,[0 .4 .45 1],[1 1 0 0],[1 20]); passband/stopband ripple

_ - _ We have seen that the optimal equiripple designs out-
yields a smaller transition width and a larger stopbapgrform Kaiser-window designs for the same order and

attenuation for the nonlinear-phase case (with approansition width. The differences are even more dramatic
mately the same peak passband ripple). The stopbandgigen the passband ripple and stopband ripple specifica-
tails are shown in Figure. tions are different. The reason is that the truncated-and-
Because it is possible to choose tlig norm with windowed impulse response methods always give a result
which to optimize firlpnormis very flexible and allows with approximately the same passband and stopband peak
for the designer to reach a compromise between equinipple. Therefore, always the more stringent peak rip-
ple and least-squares designs. This is illustrated in Figyte constraint is satisfied, resulting in exceeding (possibly

10. significantly) all other ripple constraints at the expense of
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Magnitude Response design minimum-phase filters with fixed transition width
— aisorwindon design ] and peak passband/stopband ripple. In this case, rather
Equiripple design than obtaining smaller ripples, the benefit is meeting the

same transition width and peak passband/stopband ripples
with a reduced filter order.
As an example, consider the following specifications

AN SR W TN e set:

Magnitude
{
[

H Specifications Set 3
1. Cutoff frequency: QL3rtrad/sample
2. Transition width: 002rtrad/sample

Normalized Freq‘u;ncy (xm r;d/sample) ” b 3 MaXimum paSSband ripple: 001

005

4. Maximum stopband ripple: 0.001
Figure 11: Passband ripple details for both the Kaiser-window-

designed FIR filter and the remez-designed FIR filter. The The minimum order needed to meet such specifications
Kaiser-wi_ndow design over-satisfies the requirement at the ¢fih a linear-phase FIR filter is 262. This filter must be
pense of increase number of taps. the result of an optimal equiripple design. If we relax the
linear-phase constraint however, themez function can
design a minimum-phase FIR filter that meets the specifi-
unnecessarily large filter order. cations set with 216th order:
To illustrate this, we turn to a different equiripple de-
sign in which both the peak ripples and the transiticiym = gremez (‘minorder’, [0 .12 .14 17,...
width are fixed. Referring back to the triangle in Figure [1100],[0.01 0.001], minphase’);
2, this means the resulting filter order will come from the
design algorithm. . .. . .
Consider once again the Specifications Set The 5 Optimal equiripple designs with

gremez function can be used to design this filter fixed peak ripple and filter order
b = gremez ('minorder’, [0 .3 .45 1],... . . . . .
(110 0],[.008 .0009]); So far we have illustrated equiripple designs with fixed

transition width and fixed order and designs with fixed
resulting in a filter of 37th order (38 taps). By compariransition width and fixed peak ripple values. The Filter
son, a Kaiser-window design requires a 50th order filtgfesign Toolbox also provides algorithms for designs with
(51 taps) to meet the same specifications. The passbagsl peak ripple values and fixed filter orded.[ This
details can be seen in Figufd. It is evident that the gives maximum flexibility in utilizing the degrees of free-
Kaiser-window design over-satisfies the requirements Sigsm available to design an FIR filter.
nificantly. We have seen that, when compared to Kaiser-window
designs, fixing the transition width and filter order results
4.1 Minimum-phase designs with fixed in an optimal equiripple design with smaller peak ripple
transiton width and peak pass- va:ues, whille fixingftre transi:ion widthband fpeak ripple
; values results in a filter with less number of taps. Nat-
band/stopband ripple urally, fixing the filter order and the peak ripple values
The same procedure to design minimum-phase filters wéthould result in a smaller transition width.
fixed filter order and fixed transition width can be used to To verify this, we use théirceqrip function,
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Zero-phase Response 6 Other eCIUinppIe deSIgnS

—— Kaiser-window design

N Equiripple design For specific design problems, further equiripple design
\ | options are available in the Filter Design Toolbox. No-
tably, the constrained-band design - where one can fix
| the filter order along with the peak ripple and the beggin-
N ] ing/end of a given band (passband or stopband)- and the
N sloped stopband design, where the stopband is no longer
i ] equiripple, but rather has a predetermined slope.

Zero-phase
-

AN 6.1 Constrained-band equiripple designs

e Sometimes when designing lowpass filters for decimation
it is necessary to guarantee that the stopband of the fil-
ter begins at a specific frequency value and that the filter

) _ _ ) _ _Provide a given minimum stopband attenuation.
Figure 12: Comparison of a Kaiser-window-designed FIR fil-

. . , If the filter order is fixed - for instance when using spe-
ter and an optimal equiripple FIR filter of the same order ar&q lized hardware - there are two alternatives available in
peak ripple values. The equiripple design results in a redu 3

transition-width. TRe Filter Design Toolbox for optimal equiripple designs.
One posibility is to fix the transition width, the other is to
fix the passband ripple.
For example, the design Specifications 3etall for
bc = firceqrip(50,0.375,[0.008 0.0009]); a stopband that extends from48rt to 1t and provide a
minimum stopband attenuation of approximately 60 dB.
F_or illustration purposes, suppose the filter order available
Is 40 (41 taps). The&irceqrip function can design this
filter if we also fix the passband ripple to 0.008. The result
will be a filter with the smallest possible transition width
for any linear-phase FIR filter of that order that meets the
given specifications.

025 4
Normalized Frequency (< rad/sample)

The comparison of this new design with the Kaise
window design is shown in Figur&2. The transition
width has been reduced from1®mr to approximately
0.11m

5.1 Minimum-phase designs with fixed bc = firceqrip(40,0.45,[0.008 0.0009],...
peak ripple and filter order stopedge’);

i i h i . If in contrast we want to fix the transition width, we can
Once again, if linear-phase is not a requirement, @e tha o, function. The result in this case will be
minimum-phase filter can be designed that is a SUPeriOfiyar ith the smallest possible passband ripple for any

in.some sense to a comparable Iinear—phas_e filter. ar-phase FIR filter of that order that meets the given
this case, for the same filter order and peak ripple value. .ifications

a minimum-phase design results in a smaller transitio
width than a linear-phase design. bg = gremez (40, [0 .3 .45 1],[1 1 0 0],...

For example, compared to the 50th order linear-phase [1 0.0009], {"w',"c"});
designbc, the following design has a noticeably smaller

transition width: The passband details of the two filters are shown in Fig-

ure 13. Note that both filters meet the Specifications Set
2 because the order used (40) is larger than the minimum
bem=firceqrip(50,0.375,[0.008 0.0009],'min’); order required (37) by an equiripple linear-phase filter to
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Magnitude Response Magnitude Response (dB)
8 T

—— Least-squares design
Sloped equiripple design

T T T T
—— Equiripple filter with fixed passband ripple
---- Equiripple filter with fixed transition width

Magnitude
-

Magnitude (dB)

Normalized Frequency: 0.3699951 | |
Magnitude (dB): -0.3768467 |
\ i

1 |
"‘ \ = Normalized Frequency: 0.3699951 1L
Magnitude (dB): -0.7253991 ‘

005

01 115 02 01 5 2 025 0
Normalized Frequency (< rad/sample) Normalized Frequency (xn rad/sample)

Figure 13: Comparison of two optimal equiripple FIR filters ofigure 14: Passband details of a sloped optimal equiripple FIR
40th order. Both filters have the same stopband-edge frequedegign and an optimal least-squares FIR design. The equiripple
and minimum stopband attenuation. One is optimized to mifiilter has a smaller peak error or smaller transition width depend-
mize the transition width while the other is optimized to miniing on the interpretation.

mize the passband ripple.

results in a stopband energy of approximately 3.9771e-
meet such specifications. The filters differ in how the§05, not much larger that the least-squares design of Sec-
“use” the extra number of taps to better approximate thien 3.1.2 while having a smaller transition width (or peak
ideal lowpass filter. passband ripple - depending on the interpretation). The
passband details of both the least-squares design and the
sloped equiripple design are shown in Figare(in dB).
6.2 Sloped equiripple filters The stopband details are shown in Figlife(also in dB).

An alternative to using least-squares designs is to design
optimal equiripple filters but allowing for a slope in the
stopband of the filter. This has the advantage (over least- . . .
squares designs) that the passband can remain equiripple, Advanced deSIgn algorlthms - In-
thus minimizing the input signal fluctuations in that re- terpolated FIR filters

gion.

While one can achieve sloped stopbands using theér any given FIR design algorithm, if the peak ripple
remez Or gremez methods by utilizing the weights,specifications remain the same, the filter order required to
firceqrip provides the best control and easiest way taeet a given specifications set is inversely proportional to
do this (at the expense of not having full control over thse transition width allowed.
transition width). Usingtirceqrip one can specify the \when the transition width is small, such as in the Speci-
desired slope (in dB per frequency unit) for the stopbarftations Se8, the filter order required may be quite large.

For example, the following design, This is one of the primary disadvantages of FIR filters.
We have already seen that relaxing the linear-phase re-
bf = firceqrip(42,0.4346,[0.035],[0.03],... quirement results in a significant savings in the number of

"slope’, 40, stopedge’); filter coefficients.
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Magnitude Response (dB)

—— Least-squares design | ! » Upsampled
Sloped equiripple design

r

Image -

filter SUppressar

Figure 16: The IFIR implementation. An upsampled filter is cas-
caded with an image suppressor filter to attain an overall design
with a reduced computational cost.

Magnitude (dB)
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Figure 15: Stopband details of a sloped optimal equiripple F 15 ‘ ‘ ; — T :
. . . _____ Image supressor filter ‘_w‘ i
design and an optimal least-squares FIR design. The ove N §

.. . L 1 e i \ i
error of the equiripple filter approaches that of the least-squa o8 \ U \
design_ Uu 0.1 u‘z u.‘a 0.‘4 ’ 0‘5 u.‘e 0.‘7 uja u.‘g 1

'8 ! ! ! ! ! Resulting design I
1 4
051 i
\
0 ‘
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Normalized Frequency (xm rad/sample)

The so-called interpolated FIR (IFIR) approach
[9],[10),[ 1] yields linear-phase FIR filters that can mee.

the given specifications with a reduced number of mu'E?gure 17: lllustration of the IFIR design paradigm. Two filters

pliers. are used to attain stringent transition width specifications with

The idea is rather simple. Since the length of the filtggqyced total multiplier count when compared to a single filter
grows as the transition width shrinks, we don’t designdggsign.

filter for a given (small) transition width. Rather, we de-

sign a filter for a multiplel of the transition width. This

filter will have a significantly smaller length than a di-

rect design for the original (small) transition width. Then, The idea is depicted by example in Figuré for the

we upsamplehe impulse response by a factor equal to ti§@Se of an upsampling factor of 3. The “relaxed” design
multiple of the transition widthi,.. Upsampling will cause is approximately of one third the length of the desired de-
the designed filter to compress, meeting the original sp&idn, if the latter were to be designed directly. The upsam-
ifications without introducing extra multipliers (it only in-Pled design has the same transition width as the desired
troduces zeros, resulting in a larger delay). The price48sign. All that is left is to remove the spectral replica
pay is the appearance of spectral replicas of the desit@gloduced by upsampling. This is the job of the image
filter response within the Nyquist interval. These replic&Ppressor filter.

must be removed by a second filter (called in this con-As an example of the computational cost savings, con-
text the interpolation filter or image suppressor filter) thatder once again the design Specifications3S&he num-

is cascaded with the original to obtain the desired overBr of multipliers required for a single linear-phase design
response. Although this extra filter introduces addition&®s 263. An IFIR design can attain the same specs with
multipliers, it is possible in many cases to still have ove}27 multipliers when using an upsampling factor of 6:

all computational savings relative to conventional designs.

The implementation is shown in Figuié. [bup,bimg]=ifir (6, low’, [.12 .14],[.01 .001]);
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Figure 18: Magnitude response of the upsampled filter and frigure 20: Passband details of an IFIR design revealing a rather

image suppressor filter in an IFIR design. chaotic behavior of the ripple.
Magnitude Response (dB) 7.1 Further IFIR optimizations
— IFIR design

Conventional equiripple design

A drawback in the IFIR design is that the passband ripples
of the two filters are combined in a disorderly fashion. In
the worst case scenario, they can add up, requiring the
, - - design to ensure that the sum of the two peak passband
Y M ey ripples does not exceed the original set of specifications.
1 : Close inspection of the passband of the overall design in
the previous example, shown in Figud@ reveals a rather
~ ‘ 1 I 1 chaotic behavior (but certainly within spec.) of the ripple.

Magnitude (dB)

Further optimized designs2]} [17], attain a much
‘ o ‘ cleaner passhand behavior by jointly optimizing the de-
" Normalized Frequency (n radisample) sign of the two filters to work better together. This results
in a filter that can meet the specifications set with an even
further reduction in the number of multipliers. The sav-

Figure 19: Overall magnitude response of an IFIR design %s are especially significant for the image suppressor

a conventional equiripple design. The IFIR implementation res o L L L
quires 127 multipliers vs. 263 for the conventional implementfa:l-ter’ which is greatly simplified by this joint optimiza

tion.

Utilizing this joint optimization, the Specifications Set
3 can be met with only 74 multipliers, once again for an
upsampling factor of 6. The filter can be designed using
The response of the upsampled filter and the image sthe’ adv’ flag in theifir function.
pressor filter is shown in FigurE8. The overall response, The manner in which the two filters work together is
compared to a single linear-phase equiripple designbisst described by looking at their magnitude responses,
shown in Figurel9. shown in Figure21l. By pre-compensating for a severe
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Figure 21: Magnitude response of the upsampled filter and thigure 22: Passband details of an optimized IFIR design. The
image suppressor filter in an optimized IFIR design. The tvaptimized design exhibits nice equiripple behavior.

filters are jointly optimized in the design to achieve a specifica-

tions set with a reduced number of multipliers.

—» i P uh Pl

“droop” in the image suppressor filter, a flat passband can

be achieved with dramatic savings in the number of mwdigure 23: Cascading an IFIR implementation with a downsam-
tipliers required for the image suppressor filter. Out ofer.

the 74 multipliers required, 29 are for the image suppres-

sor filter and 45 for the upsampled filter. By contrast, in

the previous IFIR design, 78 of the 127 multipliers corrg;

nd to the im ] ¢ filter. while 49 corr rﬁ:al without reducing its sampling rate would incur in
spond o the image Suppressor iter, € a9 correspoy, ecessary (and expensive) redundant processing of in-
to the upsampled filter.

. . formation.
The passband details of the overall design show a nic he idea is to downsample the filtered signal by a fac-

Squ.lnpp;(_ahbehawgr, Z'Ztmg.lat a mﬁCh bgttg gpt'm'zetgr of L to match the reduction in bandwidth due to filter-
esign. The passband details are shown in Figdre ing. If we denote byt (z) the image suppressor filter and
by U(Z-) the upsampled filter, we would have a cascade
7.2 Multirate implementation of IFIR de- of these two filters and a downsampler as shown in Fig-
sign ure 23. Using the Noble identities, we can “commute”

o ) ) the downsampler antd (z'-) to obtain the implementa-
When designing an IFIR filter, the upsampling faclor yion shown in Figure24. The combination of (z) and

used must be such that the (normalized) stopband-egge qownsampler form a decimator which can be imple-
frequencyws satisfiesLws < 1. This implies that the 1 anted efficiently in polyphase form.
bandwidth of the output signal would be reduced by a fac-
tor of L.
It is convenient from a computational cost perspecti& Interpolation filter design
to reduce the sampling frequency of the filtered signal,
since at that point the Nyquist criterion is being unnecdsthe context of multirate signal processing, interpolation
sarily oversatisfied. Subsequent processing of the filtetgzlially refers to band-limited interpolation. Band-limited
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L

I(z) ()

Figure 24: Interchange of the downsampler and the upsamg
filter using the Noble identities.

interpolation is based on the notion of an underlying ban
limited continuous-time signal that is being sampled.

Ideal band-limited interpolation will take a digital
(sampled) signal and produced an interpolated signal t
will be identical to the signal that would be obtaine
by sampling the underlying continuous-time signal at
higher rate.

Ideal band-limited interpolation can be accomplished

by means of upsampling and using an ideal lowpass filteF.

Especially interesting is a time-domain interpretation of
the ideal interpolator, which leads naturally to polyphac~
implementations.

8.1 Ideal band-limited interpolation in the

frequency domain

As we have already mentioned, the key concept
bandlimited-interpolation is that a signal to be interpc
lated is a sampled version of a band-limited continuo
time signal.

Denote the continuous-time signaliyt) and suppose
its spectrum is zero for alff| > fmax. Its frequency spec-
trum X(2mjf) is shown in Figure5.

If the signal is sampled ats = 2fhax, We obtain the
signal

1
T=2>.

il = (W)}, T=¢

Its spectrumX (€#f/1) is shown in Figure6.

Now suppose the continuous-time signal was sample
at a ratef, = Lfs = 2Lfnax. The sampled signal at the
higher rate,

T’ZE:
fg

|-

v m| = {(mT)},

X@2njf)

>
s
~
L
-

x

Spectrum of band-limited signal

L
-Fmax 0

f(Hz)

igure 25: Spectrum of band-limited continuous-time signal.

X

0.8TH

06T

0.4/TH

02T

Spectrum of xT[n]. fS = mea

L
-Fs -Fmax=Fs/2 0

Fmax=rs2  Fs
f (Hz)

Figure 26: Spectrum of sampled signal with= 2fnax.

dl’he job of the ideal interpolation filter should now be

clear from the frequency domain standpoint. Take the
discrete-time signal with spectrubty (€?Uf/%) and dig-
itally produce the discrete-time signe}, (e2™f/fs) that

) would have been obtained from sampling the original

continuous-time signal at rafg = L fs.
wherem:/Ln+ k,k=0,...,L—1, will have a spectrum The response of the ideal interpolation filter is shown
X7 (e?U/%s) as shown in Figur@7 for the casd. = 2. in Figure28. Clearly it is a lowpass filter with periodicity
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Figure 27: Spectrum of sampled signal with= 4fmax.
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Figure 28: Ideal interpolation filter overlaid with spectrum of

sampled signal witHs = 2fmax.

fs, i.e. it must be operating at the high sampling rate. For
this reason, it is necessary to upsample the input signgl2
by inserting an appropriate amount of zeros between sam-
ples in order to feed the interpolation filter a signal at the
correct rate. Once again, the key idea of ideal band-limited interpola-
More precisely, the response of the ideal filtafon is todigitally produce a signal that would be exactly
Hp (e2™f/15) for the general case of interpolation by a fathe same as a signal we had obtained by sampling a band-
tor of L is given by limited continuous time signal at the higher sampling rate.
The situation in the time domain is depicted in Figure

it /1. L [fl<s 29,
HD(ezJ/S):{ L2 3) . . o

0 2 <|f[<3 Assuming the Nyquist sampling criterion has been sat-

The impulse response of the ideal interpolation filt §fled, i.e. the contlnuous-tlmelslgnal is band_—llmlted and
can be found from the inverse DTFT][ as been sampled at a fdte= p = 2fmax, O informa-

tion has been lost from the continuous-time sigkt).
Therefore it should be possible to somehow recraate
instantaneous value:(tp) of the continuous-time signal
from the sampled signadr [n].

Looking at Figure29, we can see that the job of the
5-fold interpolator is to take every input sample[n]
) and produce 5 output samplés[m[}, m=5n+k, k=

...,4 asfollows (note thaf = 0.5 andT’ =T /5= 0.1):
As expected for an ideal lowpass filter, it takes an inf?—’ ’ ( / )

nite impulse response to realize it. Further insight for they y., 15n] = x [n]
ideal interpolation filter will be given in Sectidh2where
we analyze things in the time-domain.

Ideal band-limited interpolation in the
time domain

)

_ L sin(mtfsT'm)

h —
olm = 5 m

(4)

If we use the fact tha{ = 1/T' andT’ = {}- we have

_ sin(rm/L)

—00 <M< ©
mm/L

hD [m]

)

e Xxp/[5n+1] =xr[n+ ]

3Although this is not necessary in practice where efficient algorithms

are used. o Xp/[5n+2] = xr[n+ 2]
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FIR approximations can produce the exact linear phase,
, while approximating an allpass response as best possible.
Ideal signal On the other hand, IIR approximations will be exactly all-

interpolation P K X i
2r ’ BRI e \\ 1 pass, while trying to produce the required phase.
| \\ N\ ,// - \ | It is insightful to realize that the filters comprising the

\ T T filter bank are the polyphase components of the ideal in-
w\ 1 terpolation filter derived ing)! Thus this view of the ideal
interpolator has the efficient polyphase structure “built-

o /'/ AN i in".
0al /T Indeed, the impulse response of each fractional advance

| — Band-limited continuous-time signal filter in the filter bank is given by the inverse DTFT,

L .
he[n] = 1/ elok/Laing

02 04 06 0.8 1 12 1.4 16 18 2 22 2T[ —TT

Time (secs) R
sin(mtk)

Ln+k
=T

-
e

Signal value
8,
&f
»

Figure 29: lllustration of ideal band-limited interpolation in the
time domain. which corresponds to the decimated sequences of the
ideal impulse response by again writing uniquety=
Lh+k k=0,....L.—1in (5).
o xp/[5n+3] = x7[n+ g
8.3 Design of FIR interpolation filters
o Xp/[5n+4] = xr[n+ 2]
While interpolation filters are simply lowpass filters that
In general, the ideal interpolator consists of a bank g&n be designed with the various techniques outlined pre-
L filters which will fractionally advancehe input signal viously, the polyphase filters that compose the ideal inter-
by a factork/L,k=0,...,L—1. The outputs of the filters po|ation filter give some insight on things to be looking
are then interleaved (i.e. only one filter needs to opera¢g when designing interpolation filters.
per high rate output sample) to produce the interpolatedConsider an interpolation by a factor of The idealL

signal. polyphase filters will have a group-delay given by
ThelL filters that comprise the filter bank are the frac- .
tional advance filtersly(z), -, k=0,...,L-1

For simplicity, consider an FIR approximation to the
ideal interpolation filter where the order is of the form
N = 2LM. Then each polyphase filter will have order
N/L =2M.

L-1 Note that the ideal interpolation filter is infinitely non-
causal. After finite length truncation, it is possible to

so that each filteHy(el®) is allpass, i.e.|Hk(e/?®)| =1 make the approximation causal by delaying by half the

and has linear phase, g (e/®)} = wk/L. filter order,N/2. However, because we will implement

Herein lies the impossibility of designing these filtersn efficient polyphase form, we can make each polyphase
We cannot design them as FIR filters because no FIR @ibmponent causal by delaying it by samples.
ter can be allpass (except for a pure delay). We cannofhe delay will mean the introduction of a phase com-
design them as IIR filters, because no stable IIR filter caonent in the response of each polyphase component.
have linear phase. However, it is clear how we want & that instead of approximating the ideal fractional ad-
approximate the ideal interpolation filter bank. vanceel“¥/L the polyphase components will approximate

He(z2) =25, k=0,...,L—1.
Evaluating on the unit circle, we have

Hy(el®) = eI/t k=o0,...

)
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el@k/L-M) " The group-delay will consequently be of th@he functionfirhalfband designs FIR halfband filters.

form The specifications set still follows the triangle metaphor
shown in Figure2, taking into account the limitations just
_ dg(w) - dw(k/L—M) =M—k/L. described.
dw dow The following three function calls design three equirip-

A problem that arises is that even though the FIR aple linear-phase halfband filters using a different pair of
proximation to the ideal interpolation filter is symmetri€Pecifications in each case from the three available -order
and thus has linear phase, the polyphase components(8)e transition-width (TW), and peak passband/stopband
not necessarily symmetric and thus will not necessarﬂ?me (R)-:
ngve Iexahct Im:z?r phﬁse. .Howeyer, fpr each nlonhsym f F:'lt-:firhalfband(lOZ, 47y ; $ N and TW

polyphase filter, there Is a mirror image polyphase il .. .\ 1 ¢ . 14102, .01, dev’ ) ; N and R
ter wh|ch W'I.I have the exact same magmtude reSPONSE ¢irhalfband (‘minorder’,.47,.01);% TW and R
with a mirror image group-delay that will compensate any

o

phase distortion. To analyze how the design compares to the ideal inter-
polation filter, we can create an FIR interpolator object
8.3.1 Nyquist FIR filters and look at its polyphase subfilters, for example if we use

i ) . _the third filter,b3,
When we analyzed the behavior of the ideal interpolation

filter in the time-domain, we saw that for every inputsamy — mrilt. firinterp (2,2+%b3)

ple, L samples are produced including one that is exacHly1yphase (h)

the same as the input sample. This exact copy is “pro-

duced” by the polyphase filter that has allpass magnitudeThe magnitude and group-delay responses for the

and zero phase (i.e. the cds®). In practice, this is the polyphase components of this filter are shown in Figures

only polyphase filter that can be designed exactly, alb8@and31. Note thatM = N/2L is 16.5 in this case, so that

with a group-delay oM rather than zero. the group-delays are exactly —k/L, k=0,1. The only
Roughly speaking, a Nyquist filter is one for whicldeviation from an ideal filter (ignoring an overall delay of

one of its polyphase components is a pure delay and tiMisamples) comes from the fact that one of the polyphase

leaves the input signal unchanged (except for a possibigfilters is not perfectly allpass.

delay). When designing an interpolation filter, it is desir-

able for it to be a Nyquist filter since this will ensure thag 3 3 Other Nyquist filters

even a nonideal filter will allow the input samples to pass

through unchanged. It can also be computationally adva#yquist filters are characterized in the time-domain by

tageous since one of the polyphase subfilters will have #iir impulse response being exactly equal to zero every

r

multipliers. L samples (except the exact middle sample of the impulse
response). This is precisely why we get a polyphase sub-
8.3.2 Halfband filters filter that is a perfect allpass delay and allows the samples

to be interpolated to pass through the filter unchanged.

Nyquist filters are also calleldth-band filters because the Designing a filter that is both a lowpass and simultane-
passband of their magnitude response occupies roughlgly satisfies the just mentioned time-domain character-
1/L of the Nyquist interval. In the special case of an instic is not a trivial task except for the case of window-
terpolation by a factor of 2, the filters are knowntesdf- based designs]f], [14].
band filters. Halfband filters are commonly used when Nevertheless, the advantage of conventional optimal
interpolating (or decimating) by a factor of 2. equiripple designs over a Nyquist window-based design is

The cutoff frequency for a halfband filter is alwaysiot as clear in this case as it is with any conventional low-
0.5 Moreover, the passband and stopband ripples awess filter. We illustrate by example: consider a Kaiser
identical, limiting the degrees of freedom in the desigmindow Nyquist filter design with a stopband attenuation
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Magnitude Response (dB) munications’ The roll-off factor is related to transition-
- ‘ width simply by TW= p7t/L. In this examplep = 0.1
, ] andL = 4 thus the transition-width is.025rt.

--~ Polyphase subfilter #0
—— Polyphase subfilter #1

’ bl = firnyquist ('minorder’,4,.1,.01); % L=4

The resulting filter is of 90th order. If we design an
equiripple filter of the same order and same attenuation,
we obtain a filter with a smaller transition width, but that
1 does not satisfy the time-domain requirement.

Magnitude (dB)

b2 = firceqrip(90,.25,[.01 .01]);

" Nomalized Froquoncy (-7 radisample) The magnitude responses of the polyphase subfilters for
the Nyquist window-based design are shown in Fiize

Figure 30: Magnitude response for polyphase subfilters of B' _C_Ompariso_n* the magnitugie rF_"SponseS for the optimal
halfband FIR filter. Ideally, both subfilters would be perfecti@duiripple design are shown in Figus&. Note the bet-
allpass. ter approximation to allpass filters in the Nyquist design
compared to the equiripple design (albeit for a slightly
smaller interval - this is the tradeoff).
Similarly, if we compare the group-delay response of
— Poiyphass subfitor #0 the polyphase subfilters, the Nyquist design once again
—— Polyphase subfilter #1 better approximates the ideal constant group-delay as
compared to the equiripple design. The group-delay re-
v sponses for the polyphase subfilters of the Nyquist design
are shown in Figur84. The group-delay responses for the
polyphase subfilters of the equiripple design are shown in
**** Figure35.

Group Delay

Group delay (in samples)

9 Design of perfect-reconstruction
| two-channel FIR filter banks

" Normalized Frequency (+n rad/sample) ) A two-channel filter bank is shown in FiguB®. Filters
Ho(z) andH;(z) are called the analysis filters whi&(2)

Figure 31: Group-delay response for polyphase subfilters o?ﬁdGl(z_) are the syntheS|s filters. L
halfband FIR filter. If the 16.5 samples delay -introduced for 1he filter bank is called perfect reconstruction if the
causality reasons- is ignored, the group-delay behaves exailigl-to-end system acts as a delay, i.e. if the output signal
as the ideal interpolation filter, with an offset ofl1between is simply a delayed (and possibly scaled) version of the
the group-delay of each subfiltdr £ 2 in this example). input.

4The well-known raised-cosine filter is a special case of a Nyquist
filter. In fact, the same reason that raised-cosine filters are common, i.e.

s e . . tq achieve zero intersymbol-interference with a non ideal filter, is why

of ‘.10 dB. Nyquist filters are Oﬂ?n des_lgngd |n.terms Q%ey are able to interpolate without affecting the input samples - namely
their roll-off factor, p, due to their applications in com-the fact that the impulse response becomes zero exactly at the right time.
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Figure 32: Magnitude response for polyphase subfilters ofFayure 34: Group-delay response for polyphase subfilters of a
Nyquist FIR filter designed with the window method. Thélyquist FIR filter of order 90 and = 4.

polyphase subfilters better approximate allpass filters than a

comparable equiripple design for the bulk of the frequency band.

Group Delay
18 T T T T T
—— Polyphase subfilter #0
16+ --—- Polyphase subfilter #1 -
" Polyphase subfilter #2
Magnitude Response (dB) PolZEhase subfilter #3
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0 3k 05 oo or o8 Figure 35: Group-delay response for polyphase subfilters of a
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conventional equiripple lowpass design that could be used for
interpolation withL = 4.
Figure 33: Magnitude response for polyphase subfilters of a op-
timal equiripple lowpass FIR filter. None of the subfilters be-
haves as a perfect allpass, an indication that this is not a Nyquist

filter. struction can be achieved if
3Go(2)Ho(~2) + 3G1(2)H1(-2) =0
and
It is well-known, [LC], [15], [1€], that perfect recon- 1Go(2)Ho(2) + 3G1(9)H1(2) = 2%
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Figure 36: Two-channel subband coding filter bank.

Magnitude squared
-
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Starting with a prototype lowpass filtet(z) of odd or- ' F
derN, the following selection for the filters results in per

fect reconstruction usingplelyFIR filters [L5],

Ho(2) =H(2)
Go(2) = 22 NHo(z 1)

AN S S NS S
5 07

V Normjalized”l;reque‘r:cy (xm }ad/sample) ’
—N —1
Hi(z) =z "Ho(-2 )

N 1 Figure 37: Magnitude-squared responses of the analysis filters
Gi(2) =22 "H(z) in an FIR perfect reconstruction filter bank. The two filters are
This type of perfect reconstruction filter bank is called %ower-complementary.
orthogonalfilter bank or apower-symmetridilter bank
[19).

The functionfirpr2chfb designs equiripple FIR fil- Notice how where one filter's ripple rises the other filter's
ters HO(Z), H]_(Z), GO(Z), Gl(Z) such that the filter bank |Sripp|e declines to add up to one.
an orthogonal perfect reconstruction filter bank. The pa-|ncreasing the filter order (and possibly the passband-

rameters to specify are simply the filter ordérand the eqge frequency) improves the lowpass/highpass separa-
passband-edge frequeny. A prototype lowpass filter tjon provided by the analysis filters but doesn’t have an

is designed from which the four required filters are oRffect on the perfect reconstruction characteristic of the
tained. For example,

overall system.
[h0,hl,g0,g1] = firpr2chfb(99,.45);

Alternatively, the peak stopband ripple can be speq’_—o Implementing an FIR filter using
fied. As usual, we can obtain minimum-order designs by

specifying both the passband-edge frequency and the peak  fiXed-point arithmetic
stopband ripple. In all cases, the design specifications ap-

ply to the prototype filteH(2),

[h0,hl,90,gl]=firpr2chfb(99,1e-3,"dev’);

Several factors have to be taken into account when imple-
[h0,hl,q0,gl]=firpr2chfb('minorder’, .45, 1le-3)

menting an FIR filter using fixed-point arithmetic. For
one thing, the coefficients have to be quantized from
double-precision floating point in which they are designed
h . . db for th into fixed-point representation with usually a smaller
q T. € po;ve;—sl)l/mmetr;]c Iter.m IS used because for te3yper of bits. We must make sure we make the most
esigns, the following holds: of the limited number of bits we have. Furthermore, per-
forming the arithmetic in fixed-point will introduce fur-
ther quantization errors when actually filtering with the
We can look at the magnitude-squared responsesqaintized coefficients. Once again, we must make sure
Ho(2),H1(2) using fvtool. The magnitude-squared rewe minimize these quantization errors as much as the
sponses are shown in FiguB&for N = 19 andwp = .45m.  hardware at hand allows us.

4

IHo(61®)[2 + |H1(e1®) |2 = 1, V.
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10-1 Some nOtatlon Magnitude Response (dB)
First we will like to introduce the notation used in th )

Filter Design Toolbox to represent fixed-point number \
Consider a register used to store a fixed-point number,

bobiby  bg_1
ood... »
—_———

B—bits

Magnitude (dB)

The register haB bits (it has a wordlength @), the value
of the kth bit is given byby which can obviously be only
0 or 1. A two’s complement fixed-point number stored i
such a register has a value given by

Normialized Frequency (xn rad/sample)

B-1
value= —bp2® 14 § 2tk (6)
K=1
whereL is a positive or negative integer to be describdddure 38: Magnitude response of the filter quantized with
NOW. [16,15] format.
From ), we can see that the value of a fixed-point
number is determined by assigning weights of the form
2-™ to each bit. The leftmost bithy has the largest we need at least 16 bits in order to provide the 80 dB of
weight, 2-1-1  this bit is called the most-significant bitattenuation.
(MSB). The rightmost bitbg_1, has the smallest weight, |t is not sufficient to simply say we are going to use
24, which is why it is called the least-significant bitg pits. For example, the following code creates a fixed-
(LSB). point FIR filter using 16 bits to represent the coefficients
Given the bit valueshy, the pair{B,L} completely in fractional format:
characterizes a fixed-point number, i.e. suffices in deter-
mining the value that the bits represent. We call suctig=qgfilt (' fir’, {b}, ...
pair the format of a given quantity, and store it in a two- ’CoefficientFormat’, [16,15]);

element vector(B, L].
The magnitude response of the quantized filter is shown

in Figure38. For comparison purposes, the nonquantized
magnitude response is also shown. Note that the stopband
Consider the following filter attenuation for the quantized response is significantly less
than 80 dB at various frequency bands. The problem is
the poor utilization of the available range for this, 15]
format as shown in Figurg9.

The filter has an attenuation of 80 dB and a its largestTo make the most of the 16 bits, there are two equiva-
coefficient is 0.1206. lent approaches we can take. If we want to Use, 15]

The first thing to do is check if there are enough bifsrmat, we can scale the coefficients by multiplying them
available to represent the coefficients and provide the bg-a factor of 8 to make the largest coefficients as close to
quired dynamic range. A good rule of thumb/] is to 1 as possible without overflowing.
assume 5dB/bit for the dynamic rafgen this example  Alternatively, we can usg16,18] format so that the

5Note that the usual 6db/bit rule doesn’t apply because quantizatl%%ljamlZatlon range becom@slza 0'125>' The magni-

error for the filter coefficients tends to be correlated, especially at tﬂéde_ response using this f(_)rmat is _ShOV\{n in Figdte
extremes of the impulse response. The improvement over the first case is evident.

10.2 Quantizing the coefficients

b=gremez ('minorder’, [0 .11 .14 1],...
(1 100],[.01 .00010);
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Impulse Response Magnitude Response (dB)
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Figure 39: Impulse response of filter to be quantized shown rEigure 41: Magnitude responses for various quantizations of a
ative to the available range for the coefficient format selectedfilter with 80 dB stopband attenuation.

Magnitude Response (dB) point 3 bits to the left, without changing the bits.
) , , | To emphasize the point regarding the need to use both
o the right number of bits and use them wisely, we present
\ the magnitude response of four different quantizations of
the same filter. In all cases, the format has been selected to

cover the rang¢0.125 0.125). The responses are shown
in Figure4l. Notice that if you have fewer than 16 bits
available, you might as well redesign the filter, since you
have many more multipliers than you can ts©n the
other hand, increasing the precision to 24 bits provides
only modest improvements in this case.

Magnitude (dB)

10.3 Fixed-point filtering

Normalized Frequency (xn rad/sample)

Quantizing the coefficients correctly is not the only thing
Figure 40: Magnitude response of the filter quantized wiW€ need to worry about when implementing an FIR filter
[16,18] format. with fixed-point arithmetic. Suppose we want to imple-
ment this filter using the Direct-form structure. The struc-
ture is shown as a reference in Figdé&for 5 coefficients.
For the example at hand, we have 16 bit coefficients, and
Note that whether we scale the coefficients and uggppose we need to filter 16-bit data that is well scaled in
[16,15] or we don't scale and we uges6, 18], the ac-
tual stored value (the binary bits) of each coefficient is 6if the specification is changed from 80 dB to 60 dB, 178 multipliers

the same. However. in the former case. the filter now H4& required as opposed to 220. Ifitis reduced to 40 dB, 134 multipliers
’ ’ ’ are required. Of course it is not a given that the application can allow

a Qain of 18 dB due to the multiplication by. eight. B_“l‘his change in specifications. The point is having less than 16 bits makes
this can be compensated at the end, by moving the binatyfeasible to attain 80 dB.
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however, we will temporarily set them taone’ to have
Gutput a reference to compare to:

set (Hg, ' OutputFormat’, "none’);
set (Hq, 'ProductFormat’, 'none’);
set (Hg, ' SumFormat’, 'none’);
yi=filter (Hq, xq);

The quantityyi represents the “ideal” output. This is the
best output we can hope to compute. Aside from using
the 16-bit quantized coefficients, all computations are per-
formed with double-precision arithmetic. Havigg pro-
vides a nice reference signal to compare to.

Now we set the parameters back to their default val-
ues, except the product format is not accurate for this
case. The multiplication of @16, 18] coefficients with
a[16,15] input sample results in @32, 33] product. On
a DSP processor, we have two 16-bit registers being mul-
tiplied and the result stored in a 32-bit product register.

Figure 42: Direct-form implementation of an FIR filter with 5The correct setting for theroductFormat is [32, 33]:
coefficients.

set
set

the[—1,1) range. We can generate random data with th® (19, " SunFormat’, quantizer ([32,30]));
characteristic as follows yog=filter (Hq, xq);

Hqg, ' OutputFormat’, quantizer ([16,15]))

( H
(Hg, 'ProductFormat’,quantizer([32,33]));

An extremely useful tool to monitor what has happened

g=quantizer([16,15],’RoundMode’,’ round’); .
IS greport (Hq),

xg=randquant (q, 1000, 1) ;

We will use [16, 18] format for the coefficients for illus- Max Min | NOv | NUn | NOps
tration purposes. Since the input is already quantized, we Coefficient| 0.12| -0.026| 0 0 220
don’t need an input quantizer or a multiplicand quantizer, Input | 0.999| -0.999| O 0 1e3
Output | 0.474| -0.536| O 2 le3

Hg=qgfilt (' fir’, (b}, ... Multiplicand | 0.999| -0.999| O 0 22e3
'CoefficientFormat’, [16,18]); Prod| 0.12| -0.12 0 0 22e3
set (Hg, ' InputFormat’, 'none’) Sum | 0.527| -0.537| O 0 22e3

set (Hq, 'MultiplicandFormat’,’none’);
which in this case reports that no overflows have occurred.
For reference, the other parameters are set by defaulf@sneasure how good the output is, we compute the en-

follows: ergy of the error and the maximum error,
OutputFormat [16 15] norm (yi-yq, 2)

ProductFormat = [32 30] ans =

SumFormat = [32 30] 0.00054794884123692

“In order to reproduce the results, one can reset the seed”s) m(yi-yq, inf)

the random number generator prior to generating the random vecf@®S =
rand(’seed’,0); 3.05137364193797e-005
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Quantization noise power spectrum
T T T T T

Estimated power spectrum
—— Theoretical power spectrum

Power spectrum (dB)
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Figure 43: Model showing the quantization noise by reducifiddure 44: Theoretical and estimated power spectrum of the
the number of bits from the adders to the output. quantization noise.

Looking at Figure42, one can see there is clearly &n estimate of the noise power spectrum can be computed
source of error when moving the data from the set @ith thenlm function,
adders (what would be the accumulator in a DSP proces-

sor) to the output. Indeed, the wordlength is being rets s Prnl=nim(fiq, 512,100);

duced from 32 to 16 bits. A model of what is happening pjot of pnn (in dB) compared to the theoretical power
is shown in Figuret3. spectrum is shown in Figues.

The theoretical power spectrum of the quantization s ine quantization noise shown in Figué8is the only
noise at the output of the filter corresponding to the modglise in the system, we should be able to get an output

in Figure43is given by that exactly matchesi by setting the output format to
) = [H.(e/®)[2g2 be't.he same as the sum format (one can think of it as the
() = [Hn(&) o ability to “look inside the accumulator”),
where Hp(€!?) is the transfer function from the noise- , , .
source to the output -in this case simply one-, agds St (114, "OutputFormat’, quantizer ([32,30]));
the power spectrum of the noise source -in this case it/f§ T 11ter (Ha, xa)

constant and equal to the variance of the rise norm(yi-yq, 2)
ans =
02 = @ 2.02838467848398e-006

norm(yi-yq, inf)
whereb is the number of bits. So in this case, the theoretns =

ical power spectrum is constant and for 16 bits it is, 7.98609107732773e-008
S/(w) = 10|0910¥ = -101100811159671dB  While the error has clearly been reduced, there is still

some left, indicating some roundoff still present in the
8Strictly speaking, this formula is approximate because the signal

the accumulator does not cover the entire rajagk 1) and because we @Stem' This '5 Conﬂ.rmed by looking at the pawer spec-
are not quantizing an analog signal, rather we are reducing the nurd&fm for the noise usinglm. The plqt Of.the power spec-
of bits in an already quantized signal. trum is shown in Figurel5. The noise is obviously less
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Quantization noise power spectrum Quantization noise power spectrum
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Figure 45: Noise power spectrum when making the output fdfigure 46: Noise power spectrum when setting both the sum
mat equal to the sum format. format and the output format to [32,31].

than before (about -168 dB), which is consistent with thgeport. For this examplegreport shows that the max-

smaller errors we computed. To find the source of tiraum and minimum sum values are 0.527 and -0.5357

error it is simply a matter of looking at the discrepanagespectively. Therefore, a format 082,311 will be the

between the product format and the sum format. optimal setting to minimize quantization noise while not
The sum format is set tp32, 30] so that the three leastoverflowing.

significant bits from the product register are basically be-

ing lost. We may be tempted to make the sum format thet (Hq, " SumFormat’, quantizer ([32,31]));

same as the product format, but overflows occur left apgt (Hg, "OutputFormat’, quantizer ([32,31]));

right, yg=filter (Hg, xq) ;
norm(yi-yq,2)
set (Hqg, ' SumFormat’,quantizer ([32,33])); ans =
yg=filter (Hq, xq); 7.53800283935414e-007
Warning: 1944 overflows in QFILT/FILTER. norm(yi-yg, inf)
ans =
The problem is that for additions, in genekadits are not 2.93366611003876e-008

enough to always store the result of adding two quantities

with k bits each. Overfloiumightoccur, and when addingOnce again, the better results are confirmed bywhich

so many numbers (220 in this example) chances are vepy shows a power spectrum for the noise of -174 dB.
high that it will occur. So it is preferable to live with some 'he power spectrum plot is shown in Figué

roundoff error, rather than to overflow (the two-norm of

‘.h‘? erroris a whooping 2.09011261755715, while the 0.3.1 Using an accumulator with extended precision
finity norm is 0.285711827455089).

We can follow a trial-and-error procedure reducing thehe results obtained previously are the best we were
sum format to[32,32], [32,31], etc. until no over- able to obtain with a 32-bit accumulator such as that
flow occurs. However, a better way is to go back to tlevailable in some early DSP processors. Modern DSP
[32 30] setting, filter, and look at the report given byrocessors provide an accumulator with extended preci-
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sion, so-calledyuard bits typically 40 bits when the data
wordlength is 16 bits. —> sewgecic R Pl &R ol

If such an accumulator is available, we can get better

results once again if we use the extra bits wisely. FQfigure 47: Block diagram of the decimation part of the DDC.
instance, the following setting for the sum format will not

do,

set (Hq,’ SumFormat’, quantizer ([40,31]1)); 11 A deSign example

set (Hg, ' OutputFormat’,quantizer ([40,31])); . . o
In this section we present an example of designing two

because no overflow occurred with the2, 31] setting FIR filters for use on a digital down-converter (DDC) to
anyway. So throwing extra bits does no good (the errdi§ used to downconvert a GSM signal. The hardware to
are exactly the same as for thez, 31} case). However, Work with is a Graychip 4016 multi-standard quad DDC
if we set the LSB weighting the same as for the produ%'ﬂip [19].

format, namely, if we use the following setting, Roughly speaking, a digital down-converter has two
main parts. The first section, which consists of a

set (Hg, ' SumFormat’, quantizer ([40,33])); numerically-controlled oscillator (NCO) and a mixer is

set (Hq, 'OutputFormat’, quantizer ([40,33])); used to “bring” an IF signal down to baseband. The sec-

ond section is a (multistage) decimator used to isolate the
the errors between “ideal” and actual become exacélgsired signal.
zero. Of course, in this example it was not necessary tdn this design example we concentrate on the second
have a full 40-bit accumulator to achieve an output eRart, i.e., we assume the signal has been moved to base-
actly equal to what we have called ideal. Once agaland in a satisfactory manner.
from the report generated withreport it was evident  For decimation purposes, the 4016 provides for a multi-
that a setting of 34, 33] for both sum and output wouldstage approach consisting of 3 FIR filters. Of the three fil-
have done. ters, one is a cascaded integrator-comb (CIC) 5-stage dec-
In an actual DSP processor the output is not of the saifig@tor and two are programmable decimate-by-two FIR
width as the accumulator, so realistically we need to SBters.
the output format back to either 16 bits or 32 bits in this The multistage decimator block diagram is shown in
example. Assuming we have 32 bits for the output, wegure47. The 5-stage CIC filter takes the high-rate in-
can once again determine the best possible output setfitig signal and decimates it by a programmable factor.
by usingqreport. In this case,[32,31] is the best set- The CIC filter is followed by a 21-tap compensation FIR
ting because the minimum value reported at the outpul§sFIR) filter that equalizes the “droop” due to the CIC fil-
-0.5357. The two-norm and infinity-norm of the errors aiter and provides further lowpass filtering and decimation
by 2. The CFIR is followed by a 63-tap programmable

norm (yi-ygq, 2) FIR (PFIR) filter that is used for a final decimate-by-2.

ans = One thing to note is that in a multistage decimator one
6.82098421980174e-009 would always put the simplest filter first (that is, work-

norm(yi-yg, inf) ing at the highest rate), and would progressively increase

ans = the complexity of the filters in subsequent stages. This
3.49245965480804e-010 is exactly what happens here, the CIC filter is attractive

at high rates because it provides multiplierless operation.
which compare favorably with 7.53800283935414e-00he filter provides (coarse) lowpass filtering using adders
and 2.93366611003876e-008 respectively (which weard delays. The filter is not without its drawbacks though,
the best we could do for a 32-bit output with a 32-bit aéts magnitude response is very far from ideal and exhibits
cumulator). a “droop” in the passband which progressively attenuates
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signals. The CFIR filter is also relatively simple, havin Magnitude Response (dB)
only 21 taps. Its primary mission is to compensate for tl ‘ ‘ ‘
droop from the CIC filter. The PFIR filter is the most comr )
plex of the three, requiring 63 multiplications per sampl |
which is why it operates at the lowest rate.

It is worth pointing out that this is a good example ¢
designs that require a fixed filter order. Also, both tt
CFIR and PFIR are linear-phase filters by constructic
the designer can specify only half of its multipliers. Lin
ear phase is usually a desirable characteristic in data tre

Magnitude (dB)

mission. The available wordlength for the coefficients i
both the CFIR and PFIR filters is 16 bits.

11.1 Using the 4016 for GSM o Froquonoy )

The 4016 is programmable so that it can be used with mul-
tiple standards. To this extent, the decimation factor of Figure 48: Magnitude response of 5-stage CIC decimator.
the CIC filter can be selected as well as the coefficients
for both the CFIR and the PFIR filters.

For the particular case of GSM, we have the following; 1 4 Designing the CFIR filter
requirementsid)]

Since the overall passband that is desired is 80 kHz, it is

e Input sample rate: 69.333248 MHz worthwhile to look at the CIC response in this band to get

an idea of what the CFIR filter must compensate for. The

e CIC decimation factor: 64 ) . L
passband details of the CIC filter are shown in Figi@e

e CFIR input sample rate: 1.083332 MHz The filter shows a droop with an attenuation of about 0.4
_ dB at 80 kHz. This is far more than the allowable peak to
e PFIR input sample rate: 541.666 kHz peak ripple.

We want to design an optimal equiripple filter to make
the most of the 21 taps available. Since only 11 coeffi-
Passband width: 80 kKz cients are actually freely specifiable, we are constrained

_ to a linear-phase design.
Passband ripple: less than 0.1 dB peak to peak  \\e choose to use thei rceqrip function for the fol-
I8]wing important reasons:

PFIR output sample rate: 270.833 kHz

The CIC filter has 5 stages and a decimation factor

6.4' Toview the magmtu_de response of this filter, we can | It allows for compensation of responses of the form
simply create a CIC decimation object and dseool, |Sin<x) N
=1

Hcic=mfilt.cicdecim(64,1,5); _ - B
fvtool (Hcic) e The filter order is specifiable.

The magnitude response is shown in Figd8e The filter o It allows for a slope in the stopband, which we will
exhibits asin(x) /x> shape. It also has a large DC gain  use to attenuate spectral replicas of the PFIR filter
(more than 180 dB), that has to be compensated for. To that follows.

compensate for this large gain, the 4016 provides a power-

of-two scaling prior to data entering the filter, in order to e We can constrain the peak passband and stopband
avoid overflows. ripples.
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Figure 49: Passband details of scaled 5-stage CIC decimator. Figure 50: Magnitude response of CFIR filter.
¢ Instead of the cutoff frequency, we can specify the "passedge’,’slope’, ...
passband-edge frequency. In this particular case, Aslope,’invsinc’, [w, Npow]);

since the passband is the interf@BOkHZ, we want Hcfir = mfilt.firdecim(2,cfir);
to compensate for the CIC droop in the passband

only.

The magnitude response of the CFIR filter is shown in
Figure50 quantized to 16 bits. Without zooming in, it is

The filter order is determined for us by the hardwarbard to see the passband inverse-sinc response. We can
For the passband-edge frequency, we select 80 kHz, siaee however, as expected, the large transition width along
this the final passband of interest. We choose a very snvdth the sloped stopband. Since the largest coefficient of
passband ripple, 0.01 dB, in order for the overall ripptbe CFIR filter is 0.37, we use @6, 16] format to make
to be way within spec, keeping in mind there is still ththe most of the 16 bits available.

PFIR filter to follow which will add its own passband rip- To get an idea of the combined filter CIC*CFIR, we
ple. The stopband attenuation is selected as 40 dB withwverlay the magnitude response of each of these filters,
60 dB slope to provide adequate attenuation of the PRiRNg with the combined magnitude response of the two.
spectral replicas. Because this is a 5-stage CIC, the drddys is shown in Figur&1. We can see the spectral repli-
is of the form‘sm(x) \5, so we select 5 as the sinc powegas of the CFIR filter centered around the frequency it is

X

to compensate for. Finally, the sinc frequency factor @Perating at, 1.083332 MHz. It is hard to see the sinc-

chosen as 0.5.

N = 20; % Filter order

Npow = 5; % Sinc power

w = 0.5; % Sinc frequency factor
Apass = 5.7565e-004; % 0.01 dB
Astop 0.01; % 40 dB

Aslope = 60; % 60 dB slope

Fpass = 80/541.666; % Passband-edge

cfir = firceqrip(N,Fpass, [Apass, Astop],...

compensation in this plot. For this we zoom in further.
The zoomed-in plot is shown in Figuk®. The plot cov-
ers approximately the barj@d, 120kHZ. It is evident from
the plot that the combined response is virtually flat in the
passband (up to 80 kHz).

11.1.2 Designing the PFIR filter

An overlay of the GSM spectral mask requiremeritg] [
with the combined response of the CIC filter and the CFIR
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Figure 51: Magnitude response of CIC filter and CFIR filtéfigure 53: Magnitude response of combined CIC and CFIR fil-
overlayed, along with the combined response of the two.

Magnitude Response (dB)
T T T

040355
436277

— CIC
---- CFIR
ok --- CIC*CFIR 4
—~ PSS Frequency (MHz): 0.08!
I I N W s _____Magnitude (dB): -0.005
© T R N
=2 \\~\
20 T 4
2 L
g ~
s L
< N
i
oot 0 0% 007 o T
Frequency (MHz)

ters overlaid with the GSM spectral mask requirements. Clearly
the combination of these two filters does not meet the GSM re-
quirements.

transition band from the CFIR filter.

The PFIR filter is intended to be used to do the extra
work required to meet the GSM specifications. It is a
linear-phase FIR filter consisting of 63 taps. The design
gets a little tricky though. We know that the passband-
edge is 80 kHz, and the first adjacent band is at 100 kHz.
If we design a simple lowpass filter witlemez or gremez
as follows:

N = 62;

Fs=541666;

F=[0 80e3 100e3 541666/2]/(Fs/2);
A=[1100];

W= 1[11];

Figure 52: Passband details for the magnitude response of QG r= gremez (N, F,A, W) ;

filter and CFIR filter overlayed, along with the combined regpfir

sponse of the two.

filter is shown in Figures3. It is evident from the plot A setting ofw =

mfilt.firdecim(2,pfir);

The passband ripple requirement is not quite met. We can
alter the weights to get better passband ripple, but we must
be careful not to violate the adjacent band specifications.
[10, 11; would do the trick, but with

that the combination of these two filters is not sufficient gignificantly less adjacent band attenuation. A compro-
meet the GSM requirements for either adjacent band mise can be achieved by setting up the design as a low-
jection or blocker requirements. The combined filter stiflass with two separate stopband regions, each one with a
has a transition band that is too large, due to the lardiéferent weight to be used in the optimization:
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Figure 54: Magnitude response of PFIR filter. Figure 55: Magnitude response of CIC, CFIR, and PFIR filters.
N = 62;
Fs=541666; . "
F=[0 80e3 100e3 122e3 132e3 541666/2]/ (Fs/2); o Moonlude Response (@
A = [l 1000 OJ ; . » Adjacent/band rejection
W= [10 1 10]; \ J/
pfir= gremez (N,F,A,W); R
. . . . . 1 Blocker requirements
Hpfir = mfilt.firdecim(2,pfir); ol ( i | o
| / \
~ 1 \
The quantized PFIR filter is shown in Figusd. The % o0l .P p | // \\
maximum coefficient is 0.3378 so once again we uset 2 “ / \
[16,16] format. The reference (nonquantized) filter i & r T o
also shown, but it is practically indistinguishable from th oor \ N N ' p
guantized response. The different attenuation in the t ol ,\{ L ”\\
stopbands due to the different weighting is evident. Tl u{hp F m‘ H ‘ qu \
passband ripple is kept small in order to not exceed t | M,M e A ﬂf L
. 0 1 2 3 4 5 6 7 8 9 10 1"
allowed peak to peak ripple. Frequency (H2) x10°

A plot showing the magnitude responses of all three fu-
ters, CIC, CFIR, and PFIR, is shown m.Flglﬁﬁ Notlce Figure 56: Combined response of CIC, CFIR, and PFIR filters,
Fhat the slopeq stopband of the CFIR f||tgr provides Ma&Yong with GSM spectral mask requirement.
imum attenuation when the spectral replicas of the PFIR
filter occur.

The overall response of the combination
CIC*CFIR*PFIR is shown in Figure56. The GSM
spectral mask requirements are now easily met as is
clearly shown in the figure. The passband details ale design could be further tuned to provide a smaller
shown in Figure57. The requirement that the peak tdransition width at the expense of larger peak to peak
peak ripple be less than 0.1 dB is easily met. Cleathassband ripple and/or lesser adjacent band rejection.
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Figure 57: Passband details of combined magnitude response of
the CIC, CFIR, and PFIR filters.

A

Revision history [10]

Revision 1.1 - Corrected section on design of perfect-

reconstruction two-channel filter banks.
Revision 1.0 - Initial release.
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